

Тепловые насосы «Воздух-Вода»

Характеристики

Тихая работа

Система защиты от шума

Быстрая установка

Доступное управление, настройка и обслуживание

Высокая эффективность

Широкий модельный ряд с высоким COP/SCOP

Качество

Лучший дизайн

Эстетичный внешний вид сохраняется на протяжении всего срока службы

Проверенное качество

Разработаны и произведены во Франции

Проектирование

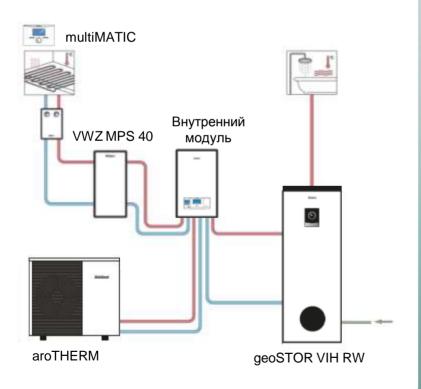
Поддержка при проектировании

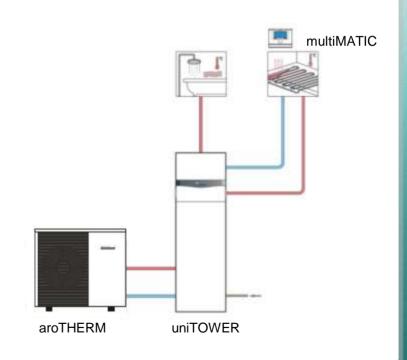
Необходимая техническая информация и помощь специалистов

aroTHERM split с внутренним модулем

- Тепловой насос «Воздух-Вода» с раздельным внутренним и наружным модулями
- Внутренний и наружный модули соединены фреонвым контуром
- Приготовление горячей воды во внешнем водонагревателе
- Внутренний блок оборудован встроенным электродогревом

aroTHERM split c uniTOWER


- Тепловой насос «Воздух-Вода» с раздельным внутренним и наружным модулями
- Внутренний и наружный модули соединены фреонвым контуром
- Приготовление горячей воды во встроенном во внутренний модуль водонагреватель
- Внутренний блок оборудован встроенным электродогревом


aroTHERM split с внутренним модулем

- Гибкость. Возможность использовать существующее оборудование (водонагреватели, пр.)
- Больше ГВС с большим водонагревателем
- Возможность использовать с системами солнечного теплоснабжения

aroTHERM c uniTOWER

- Все компоненты системы отопления и ГВС в одном модуле
- Экономия пространства и сокращение времени монтажа и

Преимущества для конечного потребителя

- Лучшая эффективность (СОР до 5.0 при A7/W35). Низкий расход электроэнергии на протяжении всего сезона отопления
- Диапазон рабочих температур наружного воздуха до -20С. Дополнительный догрев включается крайне редко
- Система не подвержена замерзанию при аварийных ситуациях. В наружном контуре только фреон. Нет необходимости использовать промежуточный контур гликоля
- Современный дизайн. Позволяет компактно разместить оборудование снаружи и внутри помещения.
- Низкий уровень шума при всех режимах работы. Уровень шума внутреннего модуля не более 40 дБ, наружного модуля – 55-60 дБ
- Режим отопления, охлаждения, нагрева горячей воды, нагрева бассейна. Позволяет снизить капитальные затраты на систему отопления / кондиционирования и сократить скорость окупаемости
- Корпус надежно защищает от доступа к вращающимся деталям внутри наружного модуля. Оборудование безопасно для размещения вблизи площадок, где играют дети
- Оборудование можно использовать в системах с газовыми котлами, вентиляционными установками и солнечными системами Vaillant. Управление от одного регулятора увеличивает комфорт пользования системой и существенно снижает затраты на отопление
- Возможность удаленного управления и мониторинга при использовании модуля VR 920. Дает возможность сократить затраты на отопление / кондиционирование и контролировать температуру в помещении в отсутствие пользователя

Преимущества для монтажника

- Оборудование для специалистов с опытом работы с фреоном
- Компактный внутренний модуль со встроенным водонагревателем (uniTOWER) для помещений с ограниченным пространством
- Внутренний модуль со встроенным дополнительным электронагревателем для работы с внешним водонагревателем или буферной емкостью
- Конструкция разработанная для легкой и удобной транспортировки и быстрого монтажа. Сокращает время и трудозатраты
- Предизолированная труба и специальные коннекторы для надежного и удобного монтажа фреонового контура
- Возможность монтажа до 7 тепловых насосов в каскад и управления отопительными контурами (до 9 шт) от одного регулятора. Позволяет реализовывать объекты с большой площадью и сложной системой отопления
- Возможность работы без регулятора VRC 700. Позволяет интегрировать тепловой насос в системы отопления с автоматикой стороннего производителя
- Использование модуля VR 920 с интерфейсом profiDialog дает возможность дистанционно изменить настройки и диагностировать неполадки оборудования
- Поддержка производителя при проектировании, монтаже, вводе в эксплуатацию и послепродажном обслуживании

Модельный ряд

Модель	Артикул
aroTHERM VWL 35/5 AS 230V	0010021631
Наружный блок теплового насоса. Тепловая мощность 3,6 кВт. Холодильная мощность 3,2 кВт. Напряжение 230 В	
aroTHERM VWL 55/5 AS 230V Наружный блок теплового насоса. Тепловая мощность 4,9 кВт. Холодильная мощность 3,2 кВт. Напряжение230 В	0010021632
aroTHERM VWL 75/5 AS 230V	0040004000
Наружный блок теплового насоса. Тепловая мощность 6,7 кВт. Холодильная мощность 4,4 кВт. Напряжение 230 В	0010021633
aroTHERM VWL 105/5 AS 230V	0010021634
Наружный блок теплового насоса. Тепловая мощность 10,2 кВт. Холодильная мощность 8,8 кВт. Напряжение230 В	
aroTHERM VWL VWL 105/5 AS Наружный блок теплового насоса. Тепловая мощность 10,2 кВт. Холодильная мощность 8,8 кВт.	0010021635
aroTHERM VWL 125/5 AS 230V	
Наружный блок теплового насоса. Тепловая мощность 11,9 кВт. Холодильная мощность 8,8 кВт. Напряжение230 В	0010021636
aroTHERM VWL 125/5 AS	0010021637
Наружный блок теплового насоса. Тепловая мощность 11,9 кВт. Холодильная мощность 8,8 кВт. Напряжение 230 В	0010021637
VWL 57/5 IS Внутренний блок теплового насосу для роботи з aroTHERM VWL 35/5 55/5 AS 230V	0010023503
VWL 77/5 IS	
Внутреннийблок теплового насосу для роботи з aroTHERM VWL 75/5 AS 230V	0010023505
VWL 127/5 IS	0010023526
Внутренний блок теплового насосу для роботи з aroTHERM VWL 125/5 AS 230V uniTOWER VWL 58/5 IS	
Внутренний блок теплового насоса с встроенным водонагревателем 190 л для роботы с aroTHERM VWL 35/5 55/5 AS 230V	0010022090
uniTOWER VWL 78/5 IS	
Внутренний блок теплового насоса с встроенным водонагревателем 190 л для роботы с aroTHERM VWL 75/5 AS 230V	0010022091
uniTOWER VWL 128/5 IS MB5 Внутрішній блок теплового насосу з вбудованим водонагрівачем 190 л для роботи з aroTHERM VWL 105/5 AS, 125/5 AS	0010022092

V = Vaillant

W = (Wärmepumpe). Тепловой насос

L = Воздух / Вода

55/5 = Номинальная тепловая мощность при A -7/W35

55/5 = Отопление и «активный холод»

55/5 = Поколение оборудования

AS = сплит система

IS = внутренний модуль

230 V = рабочее напряжение

57/5 = внутренний модуль для внешнего бака ГВС

58/5 = внутренний модуль со встроенным баком ГВС

Технические характеристики и комплектация

Обозначение		VWL 35/5 AS 230 B	VWL 55/5 AS 230 B	VWL 75/5 AS 230 B	VWL 105/5 AS 230 / 400 B	VWL 125/5 AS 230 /400 B
		0010021631	0010021632	0010021633	0010021634	0010021636
Заказной номер					0010021635	0010021637
Гехнические характеристики	_					
Гепловая мощность (A-7/W35)	кВт	3,6	4,9	6,7	10,2	11,9
Тотребление электроэнергии	кВт	1,13	1,81	2,48	3,64	4,76
Соэффициент преобразования СОР		3,2	2,7	2,7	2,8	2,5
Гепловая мощность (A7/W35)	кВт	3,2	4,5	5,8	9,8	10,3
Потребление электроэнергии	кВт	0,64	0,94	1,23	2,09	2,24
Соэффициент преобразования СОР		5	4,8	4,7	4,7	4,6
Гепловая мощность (A7/W55)	кВт	2,8	3,7	5	10,4	11,0
Тотребление электроэнергии — — — — — — — — — — — — — — — — — —	кВт	1,08	1,37	1,85	3,71	3,93
 Соэффициент преобразования СОР		2,6	2,7	2,7	2,8	2,8
епловая мощность (A35/W7)	кВт	3,2	3,2	4,4	8,8	8,8
Тотребление электроэнергии	кВт	1,14	1,14	1,57	3,38	3,38
оэффициент преобразования EER		2,8	2,8	2,8	2,6	2,6
Подключение к электросети	В/Гц	230/50	230/50	230/50	230/50 400/50	230/50 400/50
•	Α	11,5	11,5	14,9	21,3 / 13,5	21,3 / 13,5
Лаксимальный пусковой ток	°C	62	62	62	62	62
	C	02	02	02	02	02
Минимальная температура воздуха в режиме отопления и нагрева водонагревателя	°C	-20	-20	-20	-20	-20
Линимальная / максимальная температура воздуха в режиме охлаждения	°C	15/46	15/46	15/46	15/46	15/46
/ровень шума (A7/W35) не более Габаритные размеры:	дБ	51	53	54	58	58
Высота	MM	765	765	965	1565	1565
Ширина Ширина	MM	1100	1100	1100	1100	1100
-⊓убина -	ММ	450	450	450	450	450

Система защиты от шума

Максимальная звуковая мощность: < 55 - 60 дБ(A) благодаря комплексу конструкционных изменений и оптимизации звукового спектра / громкости / тональности

Тихий вентилятор

Вентилятор на звукогасящей вставке

Новый дизайн решетки

Плавный старт вентилятора

Резиновые подставки (не показаны)

Звукоизолированный корпус

Ночной режим

Резиновые вставки между деталями

Антивибрационная конструкция

Новая конструкция инвертора

uniTOWER. Все включено.

New: подключение контура хладагента сверху

Расширительный бак системы отопления 18 л.

New: Конденсатор во внутреннем блоке (сплит система)

New: Дополнительный электронагрев с модуляцией 6 кВт (для 3.5/5/7 кВт) и 9 кВт (10/12 кВт)

New: насосная группа с 3-х ходовым краном

Встроенный водонагреватель 190л Запас горячей воды с 45°С до 250 л

Не показаны:

- Полностью съемная изоляция корпуса
- Текстовый дисплей
- Место для установки модуля расширения VR70
- Встроенный заправочный кран фреонового контура для заправки системы фреоном в комфортных условиях

Опции:

Расширительный бак ГВС

Насос антилегионеллы

Активный анод

Буферная емкость 18л Отопление / охлаждение (от -15°C до70°C)

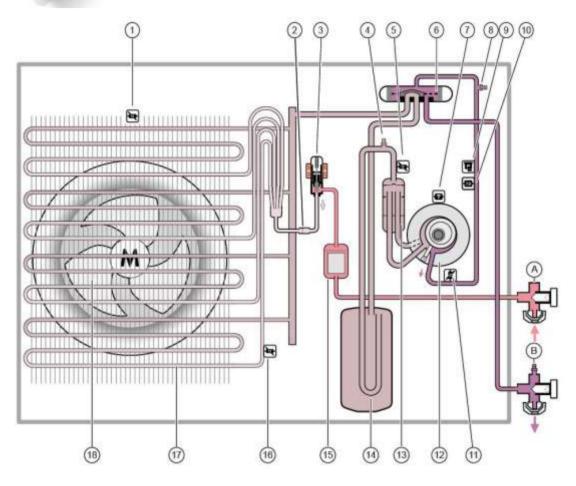
Циркуляционный насос с трубами

Гидрострелка 10 л с доп. насосом

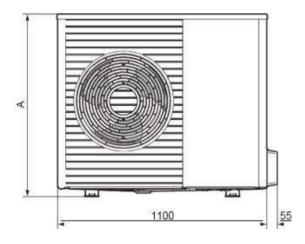
Доп. насос + смесительный кран

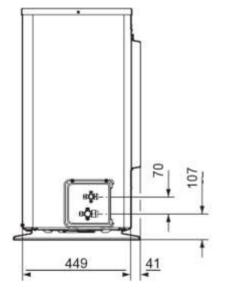
Доп. насос

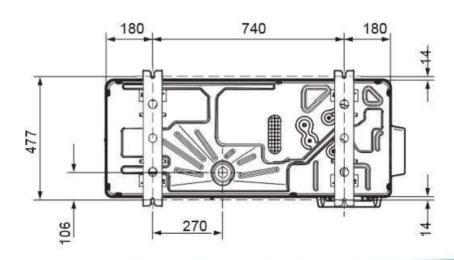
- 1 Вентилятор
- 2 Инверторный модуль
- 3 Плата управления
- 4 Компрессор
- 5 Фильтр для осушки хладагента
- 6 Запорный клапан контура хладагента (жидкость)
- 7 Запорный клапан контура хладагента (пар)



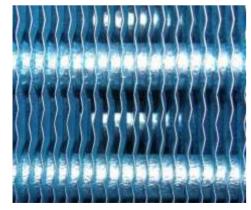
- 1 Датчик температуры воздуха
- 2 Фильтр
- 3 Электронный расширительный клапан
- 4 Сервисный кран на стороне низкого давления фреона
- 5 Датчик температуры фреона перед компрессором
- 6 4-х ходовой клапан
- 7 Датчик температуры компрессора
- 8 Сервисный кран на стороне высокого давления фреона
- 9 Датчик давления после компрессора
- 10 Предохранитель отключения ТН по давлению после компрессора
- 11 Датчик температуры фреона за компрессором
- 12 Компрессор
- 13 Отделитель жидкой фракции фреона
- 14 Емкость для хладагента
- 15 Фильтр для осушки хладагента
- 16 Датчик температуры на испарителе
- 17 Испаритель (теплообменник)
- 18 Вентилятор
- A Подключение фреонового контура (жидкость)
- В Подключение фреонового контура (пар)





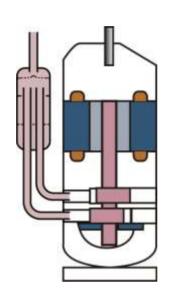

Габариты

Модель	Α
VWL 35/5	765 мм
VWL 55/5	765 мм
VWL 75/5	965 мм
VWL 105/5	1565 мм
VWL 125/5	1565 мм


Конструкция и дизайн Испаритель

Алюминиевое ребрение со специальным покрытием. Благодаря этой обработке

- капли воды, образующиеся при конденсации влаги не задерживаются на ребрах и легче стекают
- снижается сопротивление воздуха и уменьшается потребление энергии вентилятора
- задерживается замерзание благодаря относительно большому пространству (2,1 мм) между ребрами
- подходит для засоленного (морского) воздуха при размещении на определенном расстоянии от моря
- обеспечивает хорошую защиту от коррозии

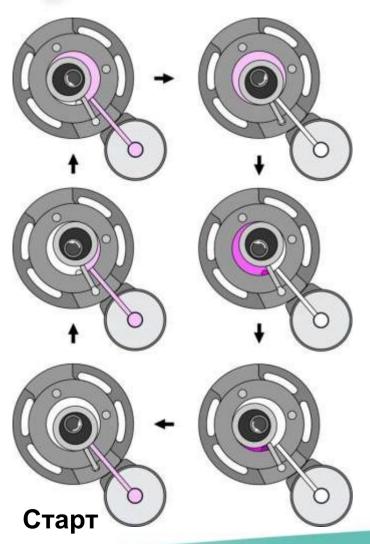


Инверторный роторно-поршневой компрессор

Мощность компрессора определяется необходимой тепловой нагрузкой.

- Снижается цикличность включения / выключения компрессора
- •Стабильный тепловой режим в отапливаемых помещениях
- •Нет высоких пусковых токов и необходимости устанавливать ограничитель пусковых токов
- •Время задержки между отключением / включением 5 мин

Если температура на выходе компрессора достигает от 90 ° С до115 ° С, в зависимости от режима, датчик выключает тепловой насос. Эта функция защищает масло в хладагенте от спекания



Инверторный роторно-поршневой компрессор

Благодаря двум эксцентрично вращающимся в противофазе друг к другу поршням, образуется постоянно изменяющееся газовое пространство. Вращательное движение позволяет втянуть пары фреона из трубопровода и сжать. Стороны всасывания и нагнетания вращающегося поршня разделены подпружиненным скользящим ползунком. При вращении пространство с фреоном уменьшается, что приводит к увеличению давления и, соответственно, температуры

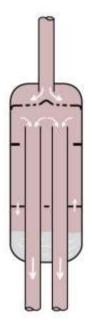
Преимущества двойного поршня:

Вал в компрессоре подвергается меньшей нагрузке. Меньшее количество вибраций формируется, благодаря тому, что сила воздействия на вал равномерно распределяется между двумя поршнями, которые балансируют друг друга.

Процесс всасывания и сжатия газа происходит при постоянном давлении (без пульсаций газа), что облегчает условия работы всех компонентов фреонового контура

Защита от тактования:

Минимально возможное время работы — 3 мин. (отключение возможно только по нескольким критичным ошибкам) Минимальное время между включениями - 6 мин



Сепаратор компрессора

Попадание жидкости в компрессор может привести к его поломке. Сепаратор исключает попадание жидкой фракции в рабочее пространство компрессора

Емкость для хладагента

Используется для компенсации количества хладагента при различных режимах работы теплового насоса (пуск, модуляция, переключение из режима нагрева в режим охлаждения) и компенсации разной длины фреонопровода

Фильтр для осушки хладагента

Задерживает влагу, частицы грязи.

Если при сервисных работах в контур могла попасть влагакартридж подлежит замене.

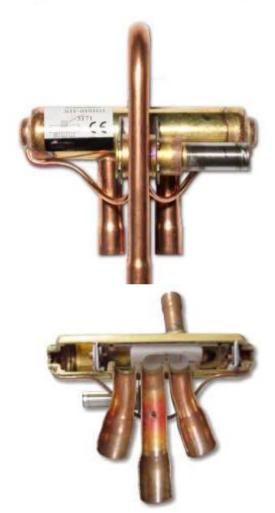
Перепад температуры более 2К говорит о забивке осушителя

Электронный расширительный клапан.

В расширительном клапане происходит расширение жидкого хладагента, в следствие чего происходит резкое снижение давления и температуры. Хладагент снова готов для отбора тепла от окружающей среды в испарителе.

Преимущества:

- Оптимальная адаптация контура хладагента к различным условиям эксплуатации
- Большая эффективности испарителя (повышенная производительность)
- Оптимальное дозирование объема хладагента, которое должно впрыскиваться в случае колебаний нагрузки
- Работает для режима отопления и охлаждения
- Не требуется ручная регулировка клапана



4-х ходовой переключающий клапан

Клапан переключает направление потока хладагента в режиме отопления и «активного холода».

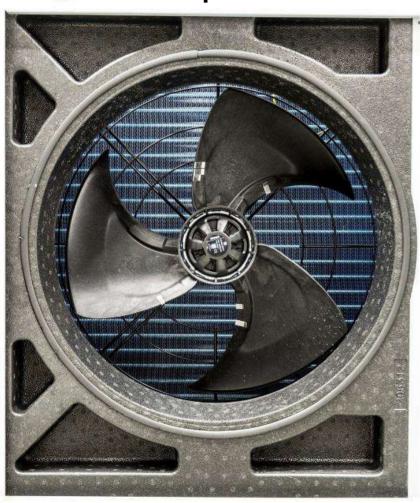
Клапан управляется соленоидом 230 В. В режиме отопления - напряжение снято, в режиме охлаждения – под напряжением.

Перед каждым пуском компрессора клапан делает два переключения для уравнивания давления и плавного пуска компрессора.

Подогрев картера компрессора

Нагревательный кабель (25 Вт, 2100 Ом) находится в нижней секции компрессора. Предназначен для подогрева масла в хладагенте и снижения его вязкости.

При температуре наружного воздуха ниже 7°С или температуре компрессора ниже 5 °С нагреватель включается и подогревает хладагент. Отключается, когда температура повышается выше 7°С При низких температурах окружающей среды нагреватель может работать до пуска компрессора до 45 мин. Если температуре на выходе компрессора при этом не поднимется выше -15°С тепловой насос не включится.



WVaillant

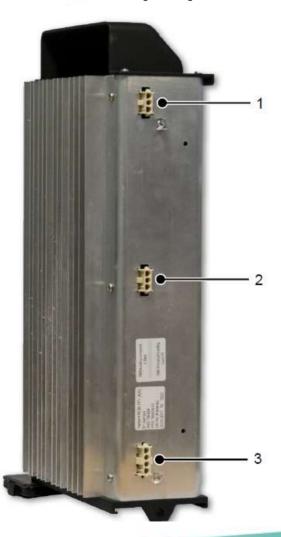
Вентилятор

Вентилятор с частотным управлением.

- Равномерно распределяет поток воздуха, предотвращая обледенение отдельных участков.
- Создает оптимальные условия для теплообмена.
- Имеет низкий уровень шума. Возможность дополнительно задать периоды, когда нужно снизить уровень шума.
- Низкое потребление электроэнергии

Система управления вентилятором через PWM сигнал. Вентилятор имеет скорость вращения в зависимости от текущего режима работы (нагрев, охлаждение или разморозка).

Программное обеспечение контролирует скорость вращения вентилятора в режиме отопления / горячего водоснабжения, чтобы поддерживать относительную постоянную температуру испарения. Скорость вентилятора зависит от скорости компрессора и температуры наружного воздуха

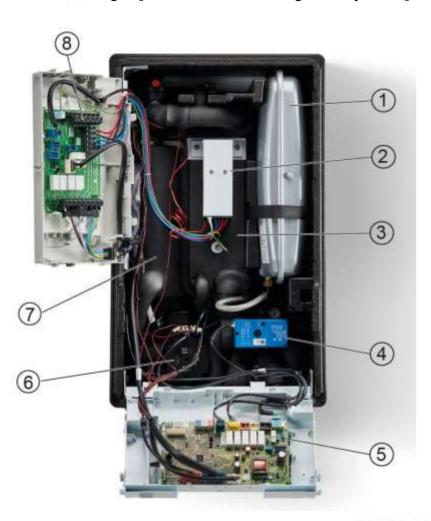


Инвертор

Скорость компрессора контролируется автоматикой. Переменный ток преобразуется в постоянный ток в трансформаторе. Преобразователь преобразует постоянный ток в трехфазный ток. Наконец, компрессор изменяет скорость вращения в соответствии с фактической тепловой нагрузкой, изменяя частоту

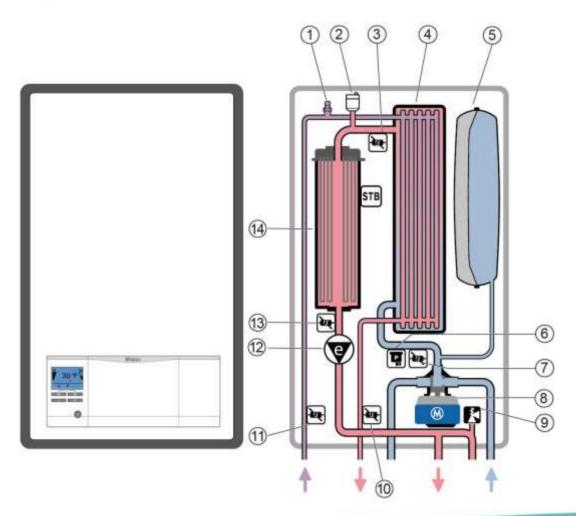
Расчет частоты зависит от разницы между заданной температурой нагрева и фактической температурой теплового потока. При запуске преобразователь регулирует компрессор в течение трех минут до 50 об / сек. (холодильный контур тестируется в течение этого времени). Затем компрессор регулируется в соответствии с потребностью в нагреве системы отопления

- 1 Источник питания
- 2 Управляющий сигнал
- 3 Подключение компрессора



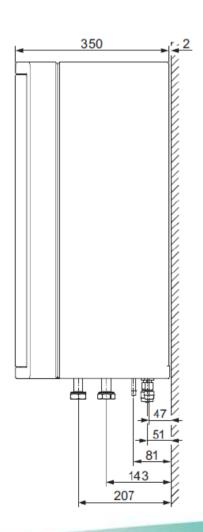
Внутренний модуль (гидравлическая станция)

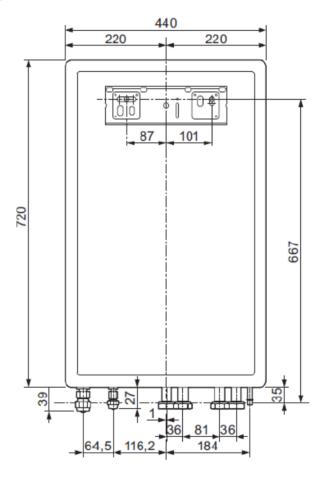
- 1 Расширительный бак отопительного контура (10 л)
- 2 Автомат резервного электронагревателя
- 3 Конденсатор (теплообменник фреон / вода)
- 4 3-х ходовой клапан ГВС / отопление
- 5 Блок электроники
- 6 Насос с частотной регулировкой
- 7 Резервный электронагреватель
- 8 Коробка электроподключений



Внутренний модуль (гидравлическая станция)

- 1 Клапан для заправки фреона
- 2 Автоматический развоздушиватель
- 3 Датчик температуры подачи после конденсатора
- 4 Конденсатор (теплообменник фреон / вода)
- 5 Расширительный бак отопительного контура
- 6 Датчик давления отопительного контура
- 7 Датчик температура обратной линии
- 8 3-х ходовой клапан ГВС / отопление
- 9 Предохранительный клапан отопительного контура
- 10 Датчик температуры контура хладагента (жидкость)
- 11 Датчик температуры контура хладагента (пар)
- 12 Насос с частотной регулировкой
- 13 Датчик расхода отопительного контура
- 14 Резервный электронагреватель





Габариты

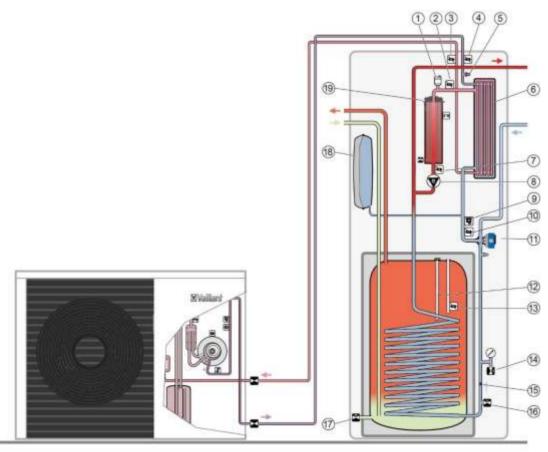
Внутренний модуль (гидравлическая станция)

uniTOWER (блок со встроенным водонагревателем)

- 1 Коробка с электрическими подключениями
- 2 Блок электроники
- 3 Кран для продувки контура нагрева водонагревателя
- 4 Манометр отопительного контура
- 5 Заправочный клапан / сливной клапан
- 6 Клапан промывки / сливной клапан
- 7 Клапан для слива воды из водонагревателя

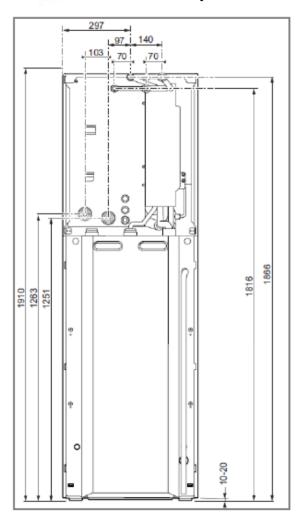
- 1 Расширительный бак отопительного контура (18 л)
- 2 Автоматический клапан для развоздушивания отопительного контура
- 3 Штуцер для заправки хладагента (жидкость)
- 4 Штуцер для заправки хладагента (газ)
- 5 Автомат резервного электронагревателя

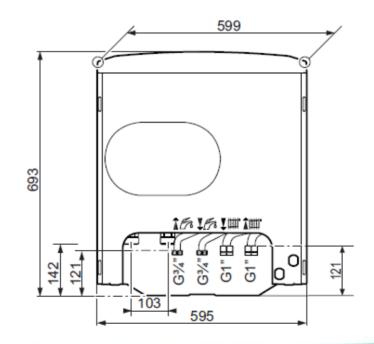
- 6 Конденсатор (теплообменник фреон / вода)
- 7 Резервный электронагреватель
- 8 3-х ходовой клапан ГВС / отопление
- 9 Насос с частотной регулировкой
- 10 Кран для продувки контура нагрева водонагревателя



uniTOWER (блок со встроенным водонагревателем)

- 1 Автоматический клапан для развоздушивания отопительного контура
- 2 Датчик температуры подачи после конденсатора
- 3 Датчик температуры контура хладагента (жидкость)
- 4 Датчик температуры контура хладагента (жидкость)
- 5 Штуцер для заправки хладагента (газ)
- 6 Конденсатор (теплообменник фреон / вода)
- 7 Датчик расхода отопительного контура
- 8 Насос с частотной регулировкой
- 9 Датчик давления отопительного контура
- 10 Датчик температура обратной линии
- 11 3-х ходовой клапан ГВС / отопление
- 12 Магниевый защитный анод
- 13 Датчик температуры водонагревателя
- 14 Заправочный клапан / сливной клапан
- 15 Обратный клапан
- 16 Клапан промывки / сливной клапан
- 17 Клапан для слива воды из водонагревателя
- 18 Расширительный бак отопительного контура (18 л)
- 19 Резервный электронагреватель





Габариты

uniTOWER (блок со встроенным водонагревателем)

Конденсатор

Насос с частотным управлением

Теплообменник фреон / вода из нержавеющей стали для передачи тепловой энергии от хладагента к теплоносителю контура отопления. В режиме «активного холода» теплообменник работает, как испаритель.

Для VWL 77/5 IS и 78/5 IS (напор 7,5 м)

Для VWL 127/5 IS и 128/5 IS (напор 9,5 м)

Тепловой насос	VWL 35/5	VWL 55/5	VWL 75/5	VWL 105/5	VWL 125/5
Минимальный расход (л/час)	150	250	400	830	885
Номинальный расход (л/час)	540	790	1020	1670	1850

Элементы для крепежа наружного модуля

Антивибрационные вставки Для бетонных оснований

Арт. 0020252091

Арт. 0020173403

Арт. 0020250226

Арт. 0020250225

Арт. 0020250224

Коннекторы для подключения фреоновых трасс

0020252879	SAE коннектор для фреоновых трасс 3/8" для VWL 75/5, 105/5, 125/5. 10 шт.
0020252881	SAE коннектор для фреоновых трасс 5/8" для VWL 75/5, 105/5, 125/5. 10 шт.
0020252878	SAE коннектор для фреоновых трасс 1/4" для VWL 35/5, 55/5. 10 шт.
0020252880	SAE коннектор для фреоновых трасс 1/2" для VWL 35/5, 55/5. 10 шт.
0020252903	Набор для калибровки медных труб 3/8", 5/8", 1/2", 1/4"

Трубы для фреоновых трасс

0020250305	Предизолированная двойная труба для фреона 3/8" и 5/8" для VWL 75/5, 105/5, 125/5. Длина 5 м
0020250306	Предизолированная двойная труба для фреона 3/8" и 5/8" для VWL 75/5, 105/5, 125/5. Длина 10 м
0020250307	Предизолированная двойная труба для фреона 1/4" и 1/2" для VWL 35/5, 55/5. Длина 5 м
0020250308	Предизолированная двойная труба для фреона 1/4" и 1/2" для VWL 35/5, 55/5. Длина 10 м

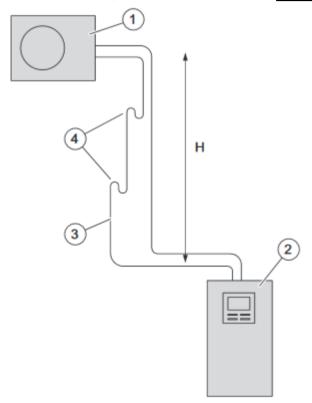
Трубы для фреоновых трасс

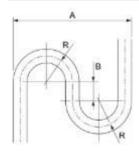
0020250309	Предизолированная одинарная труба для фреона 3/8" для VWL 75/5, 105/5, 125/5. Длина 25 м.
0020250310	Предизолированная одинарная труба для фреона 5/8" для VWL 75/5, 105/5, 125/5. Длина 25 м.
0020250311	Предизолированная одинарная труба для фреона 1/4" для VWL 35/5, 55/5. Длина 25 м.
0020250312	Предизолированная одинарная труба для фреона 1/2" для VWL 35/5, 55/5. Длина 25 м.



Изоляционная лента для фреоновых трасс

0020252090 Лента изоляционная для фреоновых трасс




Прокладка линий хладагента

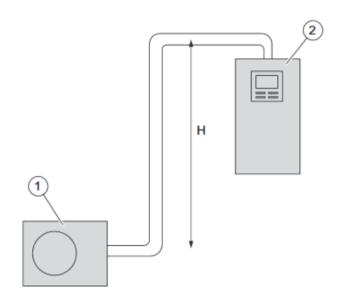
Наружный блок <u>Над</u> внутренним

Можно устанавливать внешний модуль на высоте до 30 м над внутренним блоком. Для этого типа установки разрешается использовать линию хладагента с простой длиной максимум 40 м.

Разница	Маслоподъемные петли
высот	
до 10м	Не нужна
до 20м	Петля на высоте 10м
до 30м	Петля на высоте 10м, следующая
	петля на высоте 20м

Тепловой насос	Диаметр фреоновой трассы	Α	В	R
VWL 35/5 и VWL 55/5	1/2"	173	40	40
VWL от 75/5 до 125/6	5/8"	256	40	60

- 1 внешний блок
- 2 внутренний блок
- 3 линия газообразного фреона (5/8" или1/2")
- 4 Маслоподъемная петля



Прокладка линий хладагента

Наружный блок ПОД внутренним

Можно устанавливать внутренний блок на высоте до 10 м над внешним модулем. Для этого случая высота более 10 м не допускается. Для этого маслоподъемная петля не нужна. Для этого типа установки разрешается использовать линию хладагента с длиной максимум 25 м.

1 – внешний блок

2 – внутренний блок

Инструменты необходимые для монтажа

Обязательно	Может потребоваться
Инструмент для развальцовки труб	Баллон с фреоном R410 A
Разводной гаечный ключ	
Цифровая заправочная станция	
Баллон с сухим азотом	
Вакуумный насос	

Последовательность операций при пуске фреона

1. Для подключения заправочной станции могут быть использованы краны внешнего или внутреннего блоков:

2 Продувка фреонового контура и опрессовка (25 бар в течение 10 мин) сухим азотом

Последовательность операций при пуске фреона

3. Вакуумирование фреонового контура. Разрежение должно составлять порядка -0,9 бар, процесс вакуумирования длится не менее 30 мин. После выключения вакуумного насоса система выдерживается под вакуумом не менее 10 мин.

- 4. Пуск хладагента в систему. После пуска фреона и стабилизации давления в системе дополнительно проверить герметичность соединений при помощи спрея для определения утечек. При необходимости подтянуть соединения.
- 5. Если длина сдвоенной фреоновой трубы превышает 15 м необходимо добавить фреон в систему.

Модель теплового насоса	Общая длина фреоновых труб, м	Кол-во дополнительного фреона
Bce VWL/5	≤ 15 m	Не требуется
VWL 35/5 , 55/5	> 15 m	30 г на каждый дополнительный метр
VWL 75/5 , 105/5, 125/5	> 15 m	70 г на каждый дополнительный метр

Последовательность операций при пуске фреона

Схема подключения оборудования для дозаправки фреоновой трассы

